唐山市 2021 年普通高等学校招生统一考试第二次模拟演练 数学参考答案

一. 选择题:

1~4. CABD 5~8. DBCD

9. BD

10. ACD

11. CD 12. ABC

二. 填空题:

13.
$$\frac{\sqrt{3}}{3}\pi$$
; 14. $\frac{21}{16}$;

$$14.\frac{21}{16}$$
;

15.
$$y = \tan x$$
, $\vec{y} = x - \frac{1}{x} \vec{y} = \begin{cases} x+1, & x < 0, \\ x-1, & x > 0, \end{cases}$ \(\xi\$;

16.
$$\sqrt{5}+2$$
.

17. 解:

(1) 设等差数列
$$\{a_n\}$$
的公差为 d ,则 $S_n = na_1 + \frac{n(n-1)d}{2}$, ····2 分

所以 $S_4 = 4a_1 + 6d = 24$; $S_{10} = 10a_1 + 45d = 120$,

解得
$$a_1$$
=3, d =2.

故
$$S_n = 3n + n^2 - n = n^2 + 2n$$
.

(2)
$$\frac{1}{S_n} = \frac{1}{n^2 + 2n} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right),$$

…7分

所以
$$T_n = \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_n}$$

$$= \frac{1}{2} \left[\left(1 - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n+1} \right) + \left(\frac{1}{n} - \frac{1}{n+2} \right) \right]$$

$$= \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \qquad \dots 9 \ \%$$

$$<\frac{1}{2}\left(1+\frac{1}{2}\right)$$
$$=\frac{3}{4}.$$

18. 解:

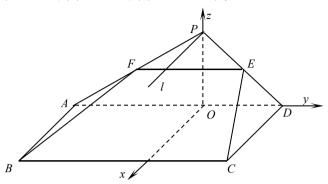
(1)
$$\overline{t} = \frac{4+13+23+33}{4} = 18.25$$
, ...3 $\%$

$$\hat{a} = \bar{y} - \hat{b}\bar{t} = 70.6375 - 0.25 \times 18.25 = 70.6375 - 4.5625 = 66.075.$$
6 $\frac{1}{2}$

(2) 2020 年对应的年份代码
$$t=43$$
,

…7分

$$M_1 = \hat{a} + \hat{b}t = 66.075 + 0.25 \times 43 = 66.075 + 10.75 = 76.825 \approx 76.83$$
.


…10分

从散点图的发展趋势可以得出: 随着年份代码增加, 人口平均预期寿命提高的越快. 因此,估计 $M_1 < M$. …12分

19. 解:

(1) 由 EF//AD, AD=2EF, 可知延长 AF, DE 交于一点设为 P. 过 P 点作 AB 的平行线即为 l, l//AB, 理由如下 ····1 分

由题意可知 AB // CD, AB⊄平面 CDE, CD⊂平面 CDE, 则 AB // 平面 CDE.

(2) 法一.

由底面 ABCD 为正方形,且平面 ADEF 上平面 ABCD,得 AB 上平面 ADEF,

由(1)可知 l//AB,则 l \bot 平面 ADEF,所以 $\angle APD$ 即为平面 ABF 与平面 CDE 所成二面角的平面角. …9 分

由 EF//AD, AD=2EF, DE=1, $AF=\sqrt{3}$, 得 DP=2, $AP=2\sqrt{3}$, 又 AD=4,则 $AD^2=DP^2+AP^2$, 所以 $\angle APD=90^\circ$.

所以,平面 ABF 与平面 CDE 所成二面角的大小为 90°.

…12分

由题意可知, P点向平面 ABCD 引垂线, 垂足落在 AD 上, 设为 O, 则 OD=1.

以 O 为原点,以 \overline{OD} , \overline{OP} 的方向分别为 y 轴,z 轴正方向,建立如图所示的空间直角 坐标系 O-xyz.

A(0, -3, 0), B(4, -3, 0), $P(0, 0, \sqrt{3})$, 则 $\overrightarrow{AB} = (4, 0, 0)$, $\overrightarrow{AP} = (0, 3, \sqrt{3})$, 设平面 PAB 的法向量为 $\mathbf{m} = (x, y, z)$,

由
$$\overrightarrow{AB} \cdot m = 0$$
, $\overrightarrow{AP} \cdot m = 0$ 得 $\begin{cases} 4x = 0, \\ 3y + \sqrt{3}z = 0, \end{cases}$ 可取 $m = (0, 1, -\sqrt{3}),$ …9 分

D(0, 1, 0),C(4, 1, 0),则 $\overrightarrow{DC} = (4, 0, 0)$, $\overrightarrow{DP} = (0, -1, \sqrt{3})$,设平面 PCD 的法向量为 n = (x, y, z),同理可得 $n = (0, \sqrt{3}, 1)$, …11 分 因为 $m \cdot n = 0$,所以平面 $PAB \perp$ 平面 PCD,即平面 $ABF \perp$ 平面 CDE,所以,平面 ABF =年面 CDE 所成二面角的大小为 90° . …12 分

20. 解:

(1) 依题意
$$S_{\triangle ABC} = \frac{1}{2} ab \sin C = \frac{1}{2} c \cdot \sqrt{3} = 2\sqrt{3}$$
,可得 $c = 4$,

22. 解:

(1) 由题设得
$$P(3, t)$$
, $A(-a, 0)$, $B(0, -1)$. …1 分 则 $\overrightarrow{AP} = (a+3, t)$, $\overrightarrow{BP} = (3, 1+t)$.

数学答案第3页(共4页)